
JOURNAL OF COMPUTATIONAL PHYSICS 18, 311-325 (1975) 

Calculation of Coulomb Energies for Uniform Charge 
Distributions of Arbitrary Shape* 

K. T. R. DAVIES+ 

Las Alamos Scientific Laboratory, Los Alamos, New Mexico 87544, and 
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 

AND 

A. J. SIERK~ 

Los Aiamos Scientific L&oratory, Los Aiamos, New Mexico 87-544 

Received January 27, 1975 

Three distinct surface-integral formulas are derived for calculating the Coulomb 
energies of uniform charge distributions of arbitrary shape. Of particular interest is an 
equation obtained by applying Gauss’divergence theorem twice. It is shown that this 
equation can be simply transformed to another expression which has been widely used 
for calculating Coulomb energies, with this derivation implying a third formula. The 
three formulas are also expressed in cylindrical coordinates for charge distributions 
possessing axial symmetry. For such shapes, numerical studies are presented showing 
the computational times and errors involved in calculating the Coulomb energies and 
generalized forces using Gaussian-Legendre quadrature formulas. We show that the 
double-divergence-derived formula is faster and more accurate than the other two 
surface-integral formulas and other formulas used in the literature. 

I. I~R~OUCTI~N 

In the study of fission and heavy-ion reactions an important part of the total 
shape-dependent macroscopic energy of a nucleus is the Coulomb energy [l]. It is 
of interest to study various methods of calculating this energy, with particular 
emphasis on exploiting those methods which are fastest and most accurate. In this 
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paper we derive three surface-integral formulas for the Coulomb energy of uniform 
charge distributions, show how they are related to each other, and compare the 
speeds and accuracies of the formulas in numerical calculations of shapes with 
axial symmetry. 

The general expression for the Coulomb energy of an arbitrary charge distribu- 
tion is a double-volume integral. If this integral is transformed into a double- 
surface integral, the number of integrations is reduced from six to four. A general 
formula of this type can be obtained by combining a derivation by Frankel and 
Metropolis [2] with one given by Hill and Wheeler [3]. Frankel and Metropolis [2] 
used scaling properties to obtain a surface integral for the Coulomb energy involv- 
ing the potential at the surface of the shape. Hill and Wheeler [3] showed how to 
evaluate this potential for axially symmetric shapes, and the resulting formula for 
the Coulomb energy has been extensively used in liquid-drop-model fission cal- 
culations [l, 4-71. We derive another surface-integral formula by applying the 
divergence theorem twice to the original volume integral. We then show that the 
earlier formula can be obtained from the relation derived from the double-diver- 
gence -theorem and deduce a third surface-integral formula. 

In practical applications, an important special case is that of axial symmetry. 
The formula of Frankel and Metropolis [2] reduces to a two-dimensional integral 
whose integrand contains complete elliptic integrals of the first and second kinds 
[3, 71. Similarly, the other two surface-integral formulas can be expressed as 
double integrals containing complete elliptic integrals. For axially symmetric 
shapes, additional formulas for the Coulomb energy have been obtained in the 
literature [8,9]. Beringer derives an approximate expression for the Coulomb 
energy by dividing the body into small slices and summing the interactions and 
self-energies of the slices in an approximate way. The accuracy of this method, 
which is rather poor, slowly improves as the number of slices is increased [8]. 
Another expression was derived by Lawrence [9], who slices the volume into 
infinitesimal disks. By a series of mathematical manipulations involving Bessel and 
hypergeometric functions, he obtains an exact equation for the Coulomb energy 
expressed as a three-dimensional integral with a relatively simple integrand. 
Lawrence’s method has been used in the fission studies of Hasse [lo]. 

For each of the three surface-integral formulas, we study the numerical accuracy 
resulting from calculating the Coulomb energy of axially symmetric shapes using 
Gaussian-Legendre quadrature. We find that the double-divergence formula is 
more accurate than either of the other two surface-integral formulas, and it is also 
the fastest of the three methods because of the symmetry of the integrand. All three 
of these formulas are much more accurate in a given time than the methods of 
Beringer [8] or Lawrence [9]. 

It should be mentioned that our studies are applicable to the calculation of any 
energy arising from a two-body potential proportional to the inverse distance 



COULOMB ENERGIES 313 

between the bodies. For example, the gravitational potential energy of a uniform 
mass distribution is trivially obtained from the Coulomb energy formula by a 
change of constant. 

In Section II we derive the three surface-integral formulas and study the relations 
among them, and in Section III we specialize these equations to axially symmetric 
shapes. In Section IV we discuss the results of numerical studies using the various 
formulas. 

II. GENERAL SURFACE INTEGRALS FOR CALCULATING THE COULOMB ENERGY 

The general expression for the Coulomb energy is 

2% = $p,‘g, Q-1) 

where the factor of 8 is used to avoid double counting and pe is the constant charge 
density 

pB = Ze(4m&3/3)-1. (2.2) 

R, is the radius of a sphere having the same volume as the shape being considered, 
and Z is the total charge of the body in units of the proton charge, e. The function 
g is defined as 

where p is the magnitude of 

p = r’ - r, (2.4) 

and each three-dimensional integration is over the entire volume of the shape. (The 
vector p and its magnitude p should not be confused with the charge density pe .) 
We next present various ways of converting this double-voIume integral into a 
double-surface integral. 

We may write 

An analogous relation has been determined for the Yukawa potential [ 1 I]. The 
appropriate expression in Ref. [I l] is misleading and is better written in the form 

:- e~$$+) = jl & + pip&p/a) - 2 + (pia + 2) exp(-fbWW4- GW 
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If one takes the appropriate limit (a + 00) which transforms the Yukawa into the 
Coulomb potential, Eq. (2.6) reduces to Eq. (2.5). Substituting Eq. (2.5) into 
Eq. (2.3) and applying Gauss’ divergence theorem twice, we obtain 

g;-; 
f f 

(dS . e)(dS’ . P) 
P ' 

which from Eq. (2.1) gives us our first double-surface-integral expression for the 
Coulomb energy. (see also Ref. [12].) 

A commonly used expression for the Coulomb energy was first obtained by 
Frankel and Metropolis using a suggestion of Hurwicz [2]. If the surface described 
by the radius vector from the origin r is changed by an infinitesimal amount 
r(Q) -, r(Q)(l + E), then the change in the Coulomb energy is 

6E, = pe s V,(r) r2(Q) dr dQ = pee s V,(r) r”(Q) dQ, (2.8) 

where V,(r) is the potential at the surface of the distribution 

V,(r) = pe J 7. (2.9) 

We next observe that EC depends on Z2/r or, by the uniformity of the charge 
distribution on P/r or r5, so that to first order in E, 

6E, = SE,. (2. IO) 

Combining Eqs. (2.8) and (2.10) and noting that r3 dQ = dS * r, we obtain 

(2.11) 

Equation (2.9) can be transformed by the divergence theorem into the surface 
integral [3, 131 

v,(r) = (pJ2)$ y, 

so Eq. (2.11) becomes 

where 

EC = (f%vO)f, 

f = ff (dS * r)(dS’ * p)/p. 

(2.13) 

(2.14) 
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This formula is derived using the following two properties of the charge distribu- 
tion: (1) the l/r dependence of the two-body potential, and (2) the uniformity of the 
charge distribution, which implies that Z is proportional to the volume of the 
distribution. 

We now show a relation between the g andffunctions. First define 

f’ = $$ (dS ’ r’W3’ * d/p, (2.15) 

and apply the divergence theorem twice to Eqs. (2.14) and (2.15), obtaining 

and 
f=jj 

d3r d3r’ (6/p + 2r * p/p3), (2.16) 

f’ = 2jj d3r d3r’ (r - p)/p3. Q-17) 

Substituting Eq. (2.4) into Eq. (2.16), we find that 

f=2jj dsr d3r’ (2/p + r’ - p/p3). (2.18) 

Interchanging r and r’ in Eq. (2.18) results in 

f=2Jj d3r d3r’ (2/p - r . p/p3). (2.19) 

We have shown that there are two ways of expressing f, Eqs. (2.16) and (2.19), 
which can be written using Eqs. (2.3) and (2.17) as 

which implies 

f=6g+f’=4g-f’, (2.20) 

g = -f’ = f/S. (2.21) 

From Eqs. (2.1) and (2.21) we are able to write a third formula for the Coulomb 
energy: 

E, = -Qe”f’. (2.22) 

It should be emphasized that there is nothing special about the function f ‘. It is 
natural to introduce f’ by replacing the factor (dS * r) in Eq. (2.14) by (dS . r’}. For 
calculating the Coulomb energy, any one of the functions f, f ‘, or g may be used 
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since they are all related through Eq. (2.21). In fact, any number of equations is 
possible since we may express EC as 

where 
EC = :p,2(xg + iyj-- zf’), (2.23) 

x+y+z=1. 

To summarize, we have derived three expressions for the Coulomb energy of a 
uniform charge distribution: 

(2.24) 

E, = (pe2/W ff W * MS * P)/P, (2.25) 

and 

E, = -(p,2/2) jf (as * r’)W’ * PI/P. (2.26) 

These equations are completely general and apply to distributions of charge of any 
shape. Equation (2.24) is invariant under the interchange of r and r’, while Eqs. 
(2.25) and (2.26) are not, and as we demonstrate in Section IV by exploiting this 
symmetry for Eq. (2.24) the computing time can be reduced. The two examples 
considered there are axially symmetric but they are typical of the kinds of shapes 
encountered in fission and heavy-ion reactions. However, it is clear that the sym- 
metry of Eq. (2.24) makes this formula faster than Eqs. (2.25) and (2.26) for 
calculating Coulomb energies for bodies of arbitrary shape, e.g., axially asym- 
metric or multiply connected shapes. Of course, any symmetry present in the shape 
allows one to further reduce the computational time, a property we also demon- 
strate in Section IV for a reflection-symmetric test body. 

In studies of fission and other dynamical processes [ 1,471 it is also of interest to 
calculate the generalized forces acting on the body studied. We then wish to 
evaluate the generalized Coulomb force 

where qi is any of the generalized coordinates describing the shape. Equations 
(2.24)-(2.26) are of the form 
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where q = (ql , qs ,...) qn), and z and # are cylindrical coordinates of points on 
the surface of the shape. Differentiating Eq. (2.28), we find that 

X [I(Z, zmfn , 4, 4’; sl) f I(Zmin Y z, $7 $‘; 411. (2.29) 

This equation may be numerically integrated to obtain the generalized Coulomb 
forces. Since numerical integration is, in general, more accurate than numerical 
differentiation, using Eq. (2.29) is more efficient than performing a numerical 
differentiation, even though the integrand in Eq. (2.29) is substantially more 
complicated than those in any of the energy expressions. 

An alternative method of calculating Coulomb forces is to consider the change 
in energy caused by an addition of an infinitesimal layer of charge on the surface 
distributed so that the change in the body’s shape corresponds to an infinitesimal 
variation of one of the generalized coordinates qr . For an arbitrary shape, the 
change in energy is given by [using the notation of Eq. (2.8)] 

with V, being evaluated by means of Eq. (2.12). 

III. SPECIALIZATION To AXIAL SYMMETRY 

(2.30) 

We now express Eqs. (2.24)-(2.26) in cylindrical coordinates (r = [p, 4, z]) for 
axially symmetric shapes. For this case, one may integrate over one of the angles 4 
to get a factor of 27~. The remaining angular integration is over the angle between 
the projections of r and r’ on the plane perpendicular to the axis of symmetry. This 
integration may also be performed yielding for E, a two-dimensional integral in z 
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and z’ whose integrand contains complete elliptic integrals. In Ref. [7], Eq. (2.25) 
was expressed as 

EC = (47rpe2/5) sZm”” dz /‘““” dz’ P(z) P(i) [P(z) - z q] 
Imin =min 

X 
i 

K(k)[P(z’) + P(z) + (2 - ww’>/wl - Wz) W) 
{[P(z) + P(z’)]2 + (z - z’)2)1’2 1 

) (3 1) 

where P(z) is the p coordinate evaluated on the surface of the charge distribution, 

k* = 4P(z) P(z’)/{[P(z) + P(z’)]~ + (z - z’)~}, (3.2) 

Wk) = K(k) - W)l/k2, (3.3) 

and K(k) and E(k) are complete elliptic integrals of the first and second kinds. 
Similarly, we express Eqs. (2.24) and (2.26), respectively, as 

E, = (2~p.2/3)j-=m” dz j-‘““” dz’ P(z) P(z’)([P(z) + P(z’)]” + (z - z’)~)+ 
Zmin "mln 

X 

X 

+ 

and 

([ K(k) ; 2D(k)] j2[PZ(z) + P2(z’)] - (z - z’)2 + 3(z - z’) 

[ 
ap(q 

W) yp- - P(z) 
ape) 

-]I + K(k) If%) P(z’N3 az 

[ p(z) - tz - z’> =] [P(z’) + (z - 2’) qq I), az (3.4) 

E, = 47rpe2 s”““” dz ~=““^ dz’ P(z) P(z’){[P(z) + P(z’)j2 + (z - z’)~}-I/~ 
%rnia Zmin 

x /[K(k) - 2D(k)] k’(z’) + (2,‘3)P(z) P(z’) - (4/3)P(z) P(z’)/k2 

+ (z - z') W') 
afyzf) am az, + Z'W -& 

+ K(k) [P(z) P(z’)/3 + z’P(z’) q 
ap(zf) ap(z) 

+ z'(z - z') -g-- T II * (3.5) 

Notice that Eq. (3.4) is invariant under the interchange of z and z’, while Eqs. (3.1) 
and (3.5) are not. The integrands in Eqs. (3.1), (3.4), and (3.5) must be replaced by 
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the appropriate limit when z --+ z’, since k2 --+ I and K(k) + 03. The integrands in 
this limit for the three equations are, respectively, 

6P(z) 
PS(z) - zP”(z) 7 , 

4P3(z)/3, 

z$cl + zPZ(z) ?$2 . 

(3.7) 

(3.8) 

Lawrence [9] derives the following three-dimensional integral for axially sym- 
metric shapes. 

J sin2 Y 
I [(z - z’)2]1/2 + [P’(z) + P”(d) f (z - z’)Z - 2P(z) P(z’) cos !ql/Z t* 

(3.9) 

which has been used by Hasse [IO] and others. There does not seem to be any 
simple way of relating Eqs. (3.1), (3.4), and (3.5) to Lawrence’s expression (3.9). 
The former formulas are derived from surface integral expressions and therefore 
contain factors aP(z)/az and aP(z’)/az arising from the surface elements dS and 
dS’, whereas Eq. (3.9) is obtained from the original volume integral, Eq. (2.3). 
Also, while the three surface-integral formulas have been reduced to two-dimen- 
sional integrals containing complete elliptic integrals, Lawrence’s formula involves 
a three-dimensional integral with the angular integration not expressible in terms 
of complete elliptic integrals. With a reliable method for evaluating the elliptic 
integrals [14], Eqs. (3.1), (3.4), and (3.5) should be faster to calculate than Eq. (3.9), 
which involves an extra numerical integration. 

For axially symmetric shapes, Eq. (2.29) reduces to 

azmtn(s) - 
%i I 

dz [Z(Z, Zmtn ; Q) i- I(zmtn , Z; cdl!. (3.10) 

The function I contains complete elliptic integrals, if one is using the integrands of 
Eqs. (3.1), (3.4), or (3.5), or a single integral over Y if one uses that of Eq. (3.9). 



320 DAVIES AND SIERK 

The symmetry of I in z and z’ for Eq. (3.4) makes Eq. (3.10) faster to evaluate in 
this case. 

For axial symmetry, Eq. (2.30) implies (71 

F,‘“‘(q) = -271, / dz Vc(z) P(z) $$. (3.11) 

This equation is quite efficient, since one evaluates V,(z) f3, 71 once when com- 
puting E, , and only needs to do a single integral for each force component. 

IV. NUMERICAL RESULTS 

We have calculated the Coulomb energy and generalized forces for a variety of 
shapes by numerically evaluating the integrals in Eqs. (3-l), (3.4), (3.5), and (3.9)- 
(3.1 I) using Gaussian-Legendre quadrature formulas. The axially symmetric 
shapes considered are described by three smoothly joined quadratic surfaces of 
revolution [6,7]. Because of discontinuities in high-order derivatives of P(z) at the 
points where the surfaces join. the shapes are divided into four parts, (at these 
joining points and at the center), with the integration in each part being performed 
by means of a Gaussian quadrature formula of a given order N. (The total number 
of integration points on the body is thus 4N). Both reflection-symmetric and asym- 
metric shapes have been considered. 

The Coulomb energies of symmetric and asymmetric shapes have about the same 
accuracy for a given formula and value of N. The numerical comparisons we make 
here are for the liquid-drop-model saddle-point shape for fissility x = 0.86 [6,7], a 
relatively compact reflection-symmetric shape. The observed errors increase by 
about a factor of IO when one considers very distorted or elongated shapes such as 
those encountered in a fissioning nucleus or in a fusion of heavy ions. 

Table I presents the time required to compute the Coulomb energy of the test 
shape on a CDC 6600 computer, and the accuracy relative to the result computed 
using Eq. (3.4) with N = 64, for Eqs. (3.1), (3.4), and (3.5). The error presented is 
in the quantity B, , defined so that E, = ELO)B, , where Eb”) is the Coulomb energy 
of a sphere. 

The elliptic integrals appearing in the integrands of the three formulas are 
evaluated to 13 significant figures using the method of Ref. 1141. This method 
approximates the elliptic integrals in about the same time as a Gaussian quadrature 
of order 8, which has an accuracy of roughly 7-8 significant figures. Landen’s 
transformation, used in Ref. [2] to evaluate elliptic integrals, is much less efEcient 
than the method used here. The preference of Hasse [lo] and others for the triple 
integral formula of Lawrence [9] over the double integral of Eq. (3.1) [6,7] may 
be due to this type of inefficient method of evaluating elliptic integrals. 
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TABLE I 

Errors in Coulomb Energy B, for the x = 0.86 liquid-drop-model saddle-point 
shape relative to the result using Eq. (3.4) with N = 64. 

Time (xc) 

Equation N Error Symmetric Asymmetric 

(3.1) 
4 -5 x 10-s 0.04 0.08 
8 -8 x 10-B 0.16 0.31 

16 -1 x 10-B 0.61 1.21 
32 -1 x IO-’ 2.42 4.84 
64 -2 x 10-s 9.66 19.33 

(3.4) 
4 +7 x lo-’ 0.03 0.05 
8 +3 x IO-8 0.12 0.20 

16 +9 x lo-‘* 0.46 0.76 
32 +3 x lo-” 1.82 3.02 
64 -1 x 10-12 7.27 12.05 

(3.5) 
4 +3 x 10-a 0.04 0.08 
8 +4 x IO-6 0.16 0.32 

16 +5 x 10-g 0.62 1.24 
32 +7 x 10-1 2.47 4.94 
64 +9 x 10-B 9.85 19.70 

Note. The times are the computation times in seconds needed to compute the 
energy for arbitrary symmetric and asymmetric shapes on a CDC 6600 computer. 
Results are presented for Eqs. (3.1), (3.41, and (3.5). 

Table II shows the time required to compute B, for the test body using 
Lawrence’s formula, Eq. (3.9), and the errors involved. The quantity N’ is the 
order of the Gaussian quadrature formula used to evaluate the Y integral in 
Eq. (3.9). 

The most striking result shown in Tables I and Ii is that the Lawrence formula, 
which is derived from the volume integral [Eq. (2.3)] is much less accurate than any 
of the three surface-integral formulas. When using Eq. (3.9), we find that doubling 
the number of integration points N improves the convergence by about a factor 
of 4. (Doubling the number of slices in Beringer’s formula [8] also decreases its 
relatively high error by about a factor of 4.) The angular integration in Eq. (3.9) has 
converged to the accuracy of the z integration for N’ = 8. Of the three remaining 
formulas, Eq. (3.4) is the most rapidly converging, by far the most accurate for a 
given value of N, and, because of the symmetry of the integrand, also the fastest to 



322 DAVIES AND SIERK 

TABLE II 

Errors in Coulomb Energy & for the x = 0.86 liquiddrop-model 
saddle-point shape calculated from Eq. (3.9). 

Time (set) 

N N Error Symmetric Asymmetric 

4 4 +7 x IO-3 0.03 0.04 
8 4 +1 x IO-3 0.10 0.16 

16 4 -2 % 10-a 0.38 0.63 
32 4 -6 x IO-’ I.50 2.48 
8 8 +2 x IO-3 0.17 0.29 

16 8 +5 x IO-4 0.68 1.13 
32 8 +1 x 10-a 2.71 4.50 
64 8 $3 x 10-s 10.8 18.0 
16 16 +5 x 10--J 1.28 2.14 
32 16 +1 x 10-r 5.12 8.55 
64 16 +3 x IO-6 20.0 34.1 
32 32 +1 x IO-” 9.96 16.6 
64 32 +3 x 10-b 39.8 66.3 

Nofe. The times are the computation times in seconds needed to 
compute the energy for arbitrary symmetric and asymmetric shapes 
on a CDC 6600 computer. The errors are relative to the result 
using Eq. (3.4) with N = 64. 

compute. Using Eq. (3.4), one finds that the convergence improves by about a 
factor of 30 when doubling N, while it improves by about a factor of 8 when one 
uses Eqs. (3.1) and (3.5). We present in Fig. 1 some of the data of Tables I and II 
plotted as the error in B, as a function of computing time. 

We have not exhaustively studied the calculation of the Coulomb forces by all 
possible equations, but compare the results using Eq. (3.11) with those obtained 
from Eq. (3.10) with the integrand of Eq. (3.4) Table III shows the computational 
times and fractional errors involved in using the alternative formulas for the 
x = 0.86 saddle-point shape mentioned above. Since the absolute errors for each 
component Fit) = -aE,/L+qi are found to be proportional to the value of that 
component, we show fractional errors AFjc)/Fi lc). The fractional errors are the 
same (within a fractor of 2) for all components with a given shape and value of N. 

Because of the simpler integrands involved, the computation time required when 
Eq. (3.11) is used for a given value of N is about one-half to two-thirds what it is 
when Eqs. (3. IO) and (3.4) are used, but the calculation is at least a factor of 20 less 
accurate for N > 8. We have also calculated the generalized forces using Lawrence’s 
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9 2 10-B 
E 
L 
g 10-g 
W 

to-‘0 - 

1.0 
Computing Time (secl 

IO. 100. 

FIG. 1. The errors involved in computing the Coulomb energy for the reflection-symmetric 
test shape as a function of computing time on a CDC 6600 computer for the four formulas (3.1), 
(3.4), (3.5), and (3.9) with iV’ = 8. The points are the observed times; the lines are straight lines 
drawn approximately through the points. The accuracy limit indicated is for the particular 
elliptic integral evaluation technique used, which is also near the limit of machine accuracy for 
the CDC 6600 computer. Evaluation methods with greater or lesser accuracy are available. 
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TABLE III 

Fractional Errors in the Coulomb Forces M,!“,F,“’ for the Same 
Test Shape as in Table I 

Equation 
Fractional 

N error 

(3.10) and (3.4) 

(3.11) 

4 +2 x IO-4 
s +I x 10-S 

16 $6 x 1OW 
32 +2 x 10-S 
64 -1 x 10-B 

Time (set) 

Symmetric Asymmetric 
- 

0.05 0.10 
0.19 0.37 
0.75 1.40 
3.05 5.50 

14.0 26.0 

4 +1 + 10-S 0.03 0.05 
8 +2 x 10-4 0.13 0.20 

16 +3 x 10-S 0.51 0.75 
32 $4 x 10-g 2.00 2.90 
64 +5 x IO-’ 8.00 11.0 

Note. The times are the computation times for all the force components 
(three for symmetric shapes, six for asymmetric shapes), and the results are 
shown for Eqs. (3.10) and (3.4) compared to Eq. (3.11). 

method [Eqs. (3.9) and (3.10)], and find the same relatively poor accuracy seen in 
the energy calculation using Eq. (3.9). 

In our numerical calculations of Coulomb energies and derivatives, we find that 
Eq. (3.4) gives the most accurate method of calculating Coulomb energies in a 
given time, and in conjunction with Eq. (3.10) gives the most efficient method (of 
those considered) for computing generalized forces. The Lawrence method of 
calculating energy and forces, which has frequently been used in the past [IO] is 
very inefficient by comparison. As remarked in Section II, it is clear that the 
symmetric formula Eq. (2.24) will be faster than Eqs. (2.25) and (2.26) for bodies 
of arbitrary shape. Our present results for axially symmetric shapes suggest that the 
symmetric formula would also be more accurate. However, since we have not 
actually performed calculations for more general shapes, we can only conclude 
that the symmetric formula is always faster, but not necessarily more accurate. 
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